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[JOHN HART] 
 
The following is Dirac's talk on projective geometry in physics at Boston University on 
October 30, 1972. 
 
[INTRODUCTION SPEAKER] 
 
It is impossible to introduce someone who is already known to everybody. Also it is true 
that most people here know who professor Dirac is, and there is no doubt that any 
branch of modern physics was either founded, or profoundly influenced by his work in 
the last 50 years or so. There is no need to dwell on the achievements of Professor 
Dirac, so I do not hold your patience any longer, and I will just mention that in his talk 
today, we'll hear more about informal orientation about certain feelings and ideas he has 
than highly technical talk. After Professor Dirac's talk, Dr. Penrose will take additional 
comments the subject, and of course the floor is then open for discussion. We are very 
grateful to Professor Dirac to have come here... [APPLAUSE] 
 
[PAUL DIRAC] 
 
When one is doing mathematical work, there are essentially two different ways of 
thinking about the subject: the algebraic way, and the geometric way. With the algebraic 
way, one is all the time writing down equations and following rules of deduction, and 
interpreting these equations to get more equations. With the geometric way, one is 
thinking in terms of pictures; pictures which one imagines in space in some way, and 
one just tries to get a feeling for the relationships between the quantities occurring in 
those pictures. Now, a good mathematician has to be a master of both ways of those 
ways of thinking, but even so, he will have a preference for one or the other; I don't think 
he can avoid it. In my own case, my own preference is especially for the geometrical 
way.  
 
I may see a lot of great algebraic work and follow through all the steps of deduction, but 
still I find difficulty in grasping the significance of the whole thing. What I like to do, as 
far as possible, is to find a way of picturing the various quantities that I'll refer to in the 
algebra, and to try to express the algebraic relations in geometrical terms. There is, of 
course, a great deal of limitation on this; the algebra is just too complicated. Any kind of 
geometrical picture may be quite unworkable; there might be too many variables; too 
many to mention, so that it is quite hopeless to try to think of it. But usually so, there 
might be parts of the work which can be pictured geometrically, and I find that I can get 
a great deal of help by using these geometrical pictures whenever possible; the pictures 
bring out clearly, in my mind, the relationships between the quantities and point the way 
to getting further relationships.  
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So, I want, today, to talk to about the help I have received from geometrical methods in 
my work on physical theory. Now, in my published work, I have never referred to these 
geometrical methods. You might be inclined to infer from that that I just don't use these 
geometrical methods, but that would be wrong. The reason that I do not refer to these 
geometrical methods in published work is because it is awkward to publish it. If you 
publish geometrical figures, it means quite a lot of work for the publisher, also a lot of 
work for the person preparing the paper, setting up pictures which are suitable for 
printing, and it is much more convenient to put everything in algebraic terms, and to just 
publish instead some algebraic analysis. And so, I'm afraid that my published work is, in 
that way, a bit misleading as a guide to the kind of thoughts that I was using in my 
research work. 
 
Now in the geometrical work, which I want to talk about, I put the emphasis on 
projective geometry. You may wonder why I do that. Why not just use the 
Euclidean geometry which we all learned about in school, which forms part of our 
basic mathematical training?  It's quite logical, and we can understand it pretty 
well. Why don't we just keep to Euclidean geometry all the time? The reason for 
that is that projective geometry is more powerful. In Euclidean geometry, we learn 
a lot of theory which Euclid originated, but with projective geometry, we can get 
more powerful theorems with less work. It is a great deal of pleasure to use these 
more powerful methods, and of course to anyone who is lazy like me, there is 
quite a strong advantage in reducing the amount of work that you have to do to 
get the results.  Once the basic ideas of projective geometry were understood by 
mathematicians, it completely superseded Euclidean geometry.  When one has 
learned projective geometry, one doesn't want to go back to the clumsy 
Euclidean ways anymore. 
 
So, projective geometry completely superseded Euclidean geometry, and for many 
decades it formed the basis o f geometrical thinking. Well, projective geometry had its 
heyday and then gradually faded away. All the more elementary results were worked 
out and incorporated into textbooks, and there wasn't any new work for mathematicians 
to do, and so they went on to consider more general kinds of geometry, geometries of 
curved space, and more abstract even than curved space. Well, these more general 
geometries are not of much use to physicists. I guess the exception, of course, would 
be curved space that was introduced by Riemann, is necessary for understanding 
gravitational theory. All of Einstein's gravitational work is based on this kind of curved 
space, but gravitation plays a very insignificant role in physics.  Atomic physics is 
concerned with particles interacting with forces and the gravitational fields are quite 
negligible, so that atomic physicists are working all the time with flat space. And if we're 
discussing flat space, the methods of projective geometry are the most powerful ones. 
 
Now, I spoke a lot about projective geometry and I expect many of you don't know what 
it is.  And I think that I should, first of all, try to explain to you the main ideas of 
projective geometry, try to get you to appreciate the power of projective geometry, how 
it is a much more agreeable kind of geometry to work with than Euclidean geometry. I 
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shall do this general discussion taking a two-dimensional space, because that will 
enable me to present the ideas in the simplest way. Then, after this discussion on two-
dimensional projective geometry, I would like to go on to the space which is of physical 
importance: the four dimensional space-time of Minkowski. And then, I shall show you 
how the projective ideas apply in Minkowski space.  
 
Let us start then, with a two-dimensional space. As we think of all the theorems that we 
learned in two-dimensional space as schoolchildren, we learned about points and lines, 
triangles, circles, right angles, and things like that.  Now, we might imagine our picture 
which gives us the understanding o f geometrical theory to be projected according to the 
standard methods. We have our plane here; take a point here, project everything on the 
picture onto another plane over here, let us say. When carrying out such a projection 
process, of course, our figure gets distorted quite a lot, but some things remain 
invariant. A point remains a point, a line remains a line, when I say line I always mean 
straight line, and a triangle remains a triangle. However, a right angle does not remain a 
right angle, two parallel lines do not remain two parallel lines, a circle does not remain a 
circle, it goes over into a conic, hyperbola, or ellipse, or something like a parabola.  
 
Now, in projective geometry, we just confine our attention to those features of the 
diagram which are unaltered by the projection process, and we just disregard all those 
features which get altered.  That is to say, we talk about triangles, we talk about two 
lines being collinear, we can talk about three lines being conparent, three lines meeting 
at a point, but we cannot talk about a right angle anymore, because that ceases to be a 
right angle. We cannot talk about a circle anymore, because it ceases to be a circle, but 
we can still talk about conics. You see, we have lost a good many of the properties of 
Euclidean geometry, and you might think that we lost something important, but I will try 
to show you that we haven't really lost anything important. We might, perhaps consider 
the questions from the  point of view of coordinates. We introduced coordinates into our 
Euclidean space; we had each point represented by two coordinates, x1 and x2, say, 
and we make transformations of coordinates, so this time, x1* = a11x1 + a12x2 + b1, and 
x2* = a21x1 + a22x2 + b2. And we're not interested in the geometrical theorem, we are 
interested in relations between points and lines, which are undisturbed by such a 
transformation of coordinates. 
 
Now, if we are dealing with the subject according to projective geometry, each point is 
represented not by two coordinates, but by three coordinates, and it is only the ratios of 
these three coordinates which are important. Each point is now represented by three 
coordinates, y1, y2, y3, and if you change all three coordinates with the same ratio, they 
still refer to the same point.  You can take any numerical multiplying factor ρ, ρy1, ρy2, 
ρy3, our coordinates are the same point as y1, y2, y3, and when we make a 
transformation of coordinates, the transformation behaves like this: yr* = crsys for all 
values of s. The transformation is just a homogeneous transformation of the three 
coordinates. The three coordinates are treated symmetrically. We can make any 
transformation which we like of this type, subject to the condition that the determinant of 
these coefficients does not vanish so that we can invert the transformation, and that 
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would be a permissible transformation of the coordinates into our two-dimensional 
projective space.  
 
When you see that the transformations are really much simpler in the projective 
geometry,  all transformations of this kind are treated together to form a very simple 
group of transformations. Here we have these rather awkward transformations, we've 
got these coefficients b1 and b2 sticking out, standing out differently from the others and 
we have to impose some special conditions on these coefficients. Of course, we might 
use three coordinates and not bother about those conditions, but three coordinates are 
usually not so convenient in Euclidean geometry.  
 
Now, what is the connection between these two ways of describing a space (the two-
dimensional space)? We get the connection if we consider these ratios: x1 = y1 / y3, x2 = 
y2 / y3. In this projected space, where we are interested only in the ratios of the three 
coordinates, we might turn our attention to these ratios here. In doing so, of course, we 
are spoiling the symmetry between the three y's, but we are getting somewhere nearer 
the Euclidean space. These x1 and x2 can now play the role of x1 and x2 in the 
Euclidean space. We should do this transformation; otherwise it becomes the non-
homogeneous transformation of these two x's. When you look at it from that point of 
view, the coordinates of the Euclidean space seem to be a rather awkward way than 
these more symmetrical arrangements in the projective space.  
 
If we take a line that would correspond to a linear equation between x1 and x2 (in the 
projective space l1x1 and l2x2), that is the equation of a line in the Euc lidean space. 
[SHOWN ON BOARD] The equation of a line in the projective space would be 
anywhere near equation connected to the three y's. Let us say n1y1 + n2y2 + n3y3 = 0. 
Here again, you see something which is more unique because it is homogeneous. It is 
neater than this description of a line in the Euclidean space. Now, every line here 
corresponds to a line here, if we just identify the x's, x1 and x2, as ratios of the y's. 
However, the converse is not true.  
 
It is not true that every line in the projective space corresponds to a line in the Euclidean 
space. There is one line here, namely, the line of the equation y3 = 0. That does not 
correspond to any line at all in the Euclidean space. Now, it's a bit awkward having an 
exceptional line in the Euclidean space, which makes the relationship between the 
Euclidean space and projective space rather awkward to describe. What we do is we 
say that there is a line in the Euclidean space corresponding to this line in the projective 
space. You can call it the line at Infinity in the Euclidean space. Euclidean space thus 
becomes projective space in which there is one line which is singled out and is called 
the line at Infinity.  While in the projective space, all the lines are treated on the same 
footing. The Euclidean space is beginning to appear something a bit artificial. Now, how 
about a circle? Beginning with a circle in Euclidean space, you could have an equation 
something like this: x1

2 + x2
2 + 2ax1 + 2bx2 + h = 0. That’s the equation of a circle.  

 
Now, in projective space, we don't have circles, we have conic sections or conics as I 
recall them briefly.  And a conic is described by an equation which is homogeneous, 
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and of the second degree in the three coordinates. We have a conic described by σrs + 
ers + xr + yr + ys = 0. Now, if we suppose that the y's determine the x's (the ratios of the 
y's determine the x's)... [INAUDIBLE] Then, any circle gives us the homogeneous 
equation between the y's this time, but it is a homogeneous equation of a special kind. 
We may take the point with the coordinates y1 = 1, y2 = i2 - 1, y3 = 0. Let’s call this point 
I. This point has imaginary coordinates, but we need not let that worry us at all.  It's just 
a point according to the standard meaning of a point, as with any other point, and you 
see that if you put down the equation between the y's: y1

2 + y2
2 + 2ay1y3 + 2by1y3 + h = 

0. You just put the x 's equal to the ratios of the y's and follow this scheme here, you get 
this, which is a conic in the projective space and this conic has the property that this 
point I lies on the conic. If you put y1 = 1, y2 = √ -1, y3 = 0, then this equation is satisfied. 
 
Then take another point, called J, where y1 = 1, y2 = -i, y3 = 0, which also satisfies this 
equation. The result is, that you have here a conic in our projective space and it has two 
points, I and J, which lie on the conic. We now get a new understanding of circles. 
Circles are just the conics in projective space which passed through these two points, I 
and J. We have our projective space here. Take any line, call it the line at Infinity, take 
any two points on the line, I and J, and then any conic that goes through those two 
points I and J, will correspond to a circle.  There's really nothing special about a circle to 
distinguish it from other conics, so far as concerns projective geometry, and if we want 
to get over to Euclidean geometry, we mix the circle with something special, we have to 
choose two points in our projective geometry and label them I and J.  
 
They are two points on the line at Infinity, and when we agree to take these two points I 
and J, we get over to a Euclidean space in which every conic going through I and J gets 
counted as a circle. Well, there we see how some of the important ideas of Euclidean 
geometry get translated into ideas in projective geometry. In Euclidean geometry there 
are other ideas which we talked about, for example, two lines being parallel. Two lines 
being parallel means that they intersect at a point on the line at Infinity. Parallel lines 
would correspond to parallel lines in the Euclidean picture. Now, another important idea 
in Euclidean geometry is perpendicular lines. How are we to understand perpendicular 
lines in projective geometry? Well, there is an important idea in projective geometry 
about two points which harmonically separate two other points. It is explained in 
projective geometry. If we take any line here, and any point A or B on the line, now, we 
take another point, P. Then, we set up this construction: draw two lines through A, like 
this, take any line through B which intersects those first two lines and leads to a point, 
here and here, then join these two points to B. Then you get two new points; join these 
two new points, and we get to a  point out here, which we call Q.  
 
We have here a simple construction in which we started from two points, A and B, 
another point P, and we get another point, Q. And it is quite easy to prove all ways of 
doing that construction will lead to the same point Q. You may take these two lines in 
various ways, two lines through A, then a line through B, any way that we like, do the 
necessary joining up, and we always finish up with the same point Q. This point, Q, is 
related in some special way to these other three points, and we say P and Q 
harmonically separate A and B. The relation is a symmetrical one; A and B also 
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harmonically separate P and Q. Now, let's go back to this picture here. Suppose we 
take two lines, they meet this time at Infinity, and two points which are harmonically 
separated by I and J, and those two lines correspond to two perpendiculars in the 
Euclidean space. So, in that way we can introduce the idea corresponding to 
perpendicularity in the projective space. There is a little further development which one 
can make for something corresponding to distance into the projective space, but I don't 
think I need to enter that; it's not of such general importance. 
 
But the situation now is that when we have any picture in the projective space, we take 
two points, label them I and J, and the line joining them, we label the line at Infinity, and 
in the end we get a picture in Euclidean space. Conversely, any picture in Euclidean 
space will give us a picture in projective space a picture which involves these two 
special points, I and J. From the point of view of projective geometry, the points I and J 
are no different from any other points. Euclidean geometry just, so to speak, picks out 
two points in the projective space and assigns to them special properties. These two 
points and the line joining them are called the absolute, they are assigned special 
properties, this assignment is really quite arbitrary, and when we do this assignment, we 
get a picture in Euclidean space.  
 
We’re now in the position to be able to take any of Euclid's theorems and translate it into 
a picture in projective geometry. I would just like to give you a simple example to show 
you how it goes. I'll take this example: if you take the diameter of a circle and any points 
A and B, and draw lines from A to E and B to E, these two lines are at right angles, 
something we all learned as schoolchildren. We can now translate this at once into a 
theorem of projective geometry. What we have now, is this diagram.  
 
This circle becomes a conic; let's draw it as an ellipse. Then, this conic goes to two 
points, I and J; let's draw them out here, call this one I, this one J. Now, here we have 
the center of the circle, let us say, C. What point does C correspond to in this picture in 
projective space? Well, one can work that out quite easily and the answer is that you 
take tangents to the circle at the points I and J and see where they meet. Where they 
meet is the center of the circle, C. Now, you might say that doesn't look right 
[LAUGHTER]; the center is not even inside our conic, and the reason why it doesn't look 
right, is that we've drawn these points, I and J, as real points when really they're 
imaginary. That, of course, puts the picture altogether out, but the arguments which we 
make this picture remain correct.  And so that here, we have these points going through 
I and J, and point C really is the center of the circle.  
 
Now, the diameter AB, that's just a straight line going through the center, so we pick any 
line through C, such as this one, and where it meets the circle, we get the two points A 
and B. Then, we take any other point on the circle, say point B, join it up like this, BA , 
BE, and then -- it's not really convenient as I've drawn it here, I'm going to have this 
point go off the board -- take point B to be here. Draw BA, BE, and then, we see that BE 
and BA harmonically separate I and J. The condition for the lines BA and BE to be 
perpendicular to each other, which is what this theorem of Euclid tells us, are 
harmonically separated by I and J. There you see a well-known theorem of Euclidean 
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geometry becomes a theorem about ellipses; actually, a much more general theorem.  
 
You might say you're not very much interested in ellipses, why bother about them, but 
you see what you can do. Once you've got this projective theorem, you can take any 
other two points and call them I and J, if you like. There’s nothing really special about 
these two points; you might call them points A and B, set up a new picture where A and 
B become I and J, and then you would get a new Euclidean picture describing a new 
theorem. But it turns out in this case that the new theorem which you get is practically 
identical to the original one, so you haven't really gained anything. But in other 
examples, you do get a new theorem by taking two different points and calling them I 
and J. You see that to understand the relationship properly, you ought to work without 
calling any two points I and J, to be perfectly general, and then you have a projective 
picture.  
 
Now, there's another very interesting procedure that you can make in projective 
geometry, using the equation of a line. I wrote it up there: n1y1 + n2y2 + n3y3 = 0. The line 
is described by the three n's. It’s only the ratio of the n's that matter; the three n's can be 
looked upon as the coordina tes of a point in another projective space. We can get, in 
that way, a second projective space in which every line of the first projective space 
corresponds to a point in the second projective space; any point of the first projective 
space corresponds to a line in the second projective space. We get a new projective 
space in which the concepts of point and line are interchanged.  That's something we 
can't do in Euclidean geometry, but it means that, when we’ve got any theorem in 
projective geometry, such as the one that I've described here, you can get another 
theorem by replacing all the points by lines and all the lines by points.  
 
The purely mechanical procedure will enable you to get a new theorem starting with any 
particular theorem. I would just like to mention what happens inside this process, which 
is called the process of taking a dual, for this example here. The conic remains a conic. 
Points on the conic, become lines touching the conic. We get a new picture in which we 
have a conic like this: all these points on the conic become lines touching the conic, if I 
could draw them properly...lines I and J. I will use small letters to denote the lines 
corresponding to the points in this picture. We have these lines, I and J, touching the 
point corresponding to these two points, I and J, on the conic. Then, we take some 
more lines, A and B, this one corresponding to A, this one corresponding to B. then we 
take one more line, let's say the line B, I'll draw it out here. This is the line B 
corresponding to this point B here.  
 
Now, here we have the line AB; here we shall have corresponding with a point where A 
and B intersect; that will be down here; this is the point here. Then, we take B that we 
have here, and then we have the theorem that tells us that these two points A and B, 
are harmonically separated by these two lines, I and J. This point, and this point, are 
harmonically separated by this point, and this point right here. We’ve got another 
theorem, which is essentially the same theorem, the general one, that every point has 
become a line, and every line has become a point. Now, we may take this new theorem 
which we've got here, take any two points and it, call them I and J, and get back to the 
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theorem in Euclidean space. What do we get, if we take for example...we want to take 
these two points, I and J, then our conic again becomes a circle, and we get a theorem 
in Euclidean geometry, let me figure it out... [SEARCHING]...I know I've got the theorem 
in my notes...this is the line B, this is A, this is B... [WRITING ON BOARD]...this is the 
point IJ where the two lines I and J intersect.  
 
The theorem now tells us that these two lines are perpendicular to each other. Then you 
take two parallel lines, A and B... We now get a rule which tells us that if we have two 
parallel lines touching a circle, then take any third line like this touching the circle, and 
draw these two lines from the center, then these two lines are perpendicular to each 
other. We’ve got a new theorem in Euclidean geometry starting out from the original 
theorem just by a mechanical procedure, a sort of procedure which a computer can do. 
We do that by crossing over to projective space, and then projecting projective space 
into Euclidean space in various ways. Well, I think that this will give you some idea of 
the power of projective geometry. It is essentially a device for saving work, for enabling 
you to do in a single piece of work, what would take several different pieces of work if 
you just followed by Euclid's methods, and once you've gotten familiar with these ideas 
of projective geometry, you never want to go back to Euclid's methods again. 
 
Well, that is the discussion of two-dimensional projective space, but there is, of course, 
a lot of details to fill in before one would master the subject. I would like now to go onto 
something which is of more value to the physicists.  A physicist is not very often 
concerned with two-dimensional space. Suppose you go over to three-dimensional 
space. In three-dimensional Euclidean space, each point has three coordinates which 
transform non-homogeneously. In the three-dimensional projective space, each point 
will be specified by the ratios of all coordinates, and the four coordinates transform 
homogeneously.  
 
In the projective space we must take a certain line...in the projective space, we must 
take a certain plane and call it the plane at Infinity,  if we want to get a connection with 
the three-dimensional Euclidean space. And then instead of the two points, I and J, the 
two points forming the absolute in two-dimensional space, we have a conic in this plane 
and we call that conic the absolute, and we say that any quadric -- a quadric is a 
[INAUDIBLE] of sorts, represented by a homogeneous equation, with what would be 
four variables in the three-dimensional projective space. Any quadric which meets this 
plane at Infinity in this absolute conic, is counted as a sphere. Then we have a similar 
way of taking care of perpendicularity. Then, we can go on from that to four dimensional 
space. Now, in four dimensions we need five homogeneous coordinates which will have 
an absolute now which consists of four dimensional flat space, corresponding to the 
space at Infinity, and we shall have a quadric in this space at Infinity playing the role of 
the absolute. 
 
Now, as physicists where interested in not four dimensional Euclidean space, but four 
dimensional Minkowski space, and that will result in the absolute quadric becoming a 
real quadric instead of an imaginary one.  In all this discussion of Euclidean space going 
over to projective spaces, we always had an absolute involving imaginary points.  
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Although we can argue about them, when we draw pictures they seem to be wrong. 
When we go over to Minkowski space, the absolute becomes a real quadric, and that 
makes it very much easier to understand. Perhaps it's very special and fortunate , the 
circumstance that physics is interested in Minkowski space, and Minkowski space is an 
especially favorable one to understand from the point of view of projective geometry.  
We have an absolute now, consisting of a three-dimensional space and a quadric in this 
three-dimensional space.  
 
Now, a lot of the work in physics involves just the directions of vectors and the 
directions of various quantities, and if we're discussing the directions, it is sufficient just 
to see where these directions meet the hyper plane at Infinity; they will meet the hyper 
plane at Infinity at certain points, lines, or whatever structure it is we are interested in. 
And if we just think in terms of this hyper plane at Infinity, we have a three-dimensional 
space. Talking of a four dimensional space is something that is hard to imagine, but we 
can't really imagine it. We talk about it as though we could, but when we are concerned 
just with directions, the things in the space of physics, we can represent them all in 
terms of a three-dimensional space according to the methods of projective geometry. 
We have a three-dimensional projective space in which there is an absolute quadric. 
We imagine this quadric is a sort of ellipsoid, and any direction in the physical space 
corresponds to a point in this three-dimensional projective space.  
 
We see, at once, that there are three kinds of points: points that lie inside the ellipsoid, 
points that lie outside the ellipsoid, and points that lie on the ellipsoid. Now, those 
correspond to the three kinds of directions which we have in physical space. Points 
inside the quadric correspond to the direction of the particle-- timeline direction; points 
outside the quadric correspond to space line directions; points on the quadrant 
correspond to the directions of light rays, or null directions, as you might call them. 
These directions are all immediately pictured in the three-dimensional projective space, 
and all the other relationships between directions of things in physical space can 
immediately be [TAPE SKIPS] in physical space.   
 
If we have three directions, such that the superposition of two of them is to the third, 
then that would correspond to three points in the projective space which are collinear. 
One result which you can immediately see goes like this: suppose we take two points, 
say A and B, in our three-dimensional projective space, which I've always done by 
writing like this. This time, we’ll have the points meet the quadric [INAUDIBLE]... Now, 
here we have four points on a straight line, and four points on a straight line can have 
their relationship described by an invariant number, a number which is invariant under 
projections called the cross ratio of those four points.  That corresponds to the fact that 
these two points, A and B, have an invariant angle between them and we think of them 
as two points, two directions in physical space. But, it holds also that these two points, A 
and B, are outside the quadric, or maybe one inside and one outside, and we can then 
join them up if these two points, P and Q.  
 
Now, it might be that this time it does not meet the quadric; that's not to say it does not 
meet the quadric, it's just something that would be described mathematically by saying it 
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meets the quadric at two imaginary points, just lying outside, like this, and we still get 
the four points such that we can form an invariant number from them. However, if this 
line should touch the quadric, then we only have three points. That means that if we 
have two directions in space-time, such that the line joining them in this picture is [TAPE 
SKIPS] nowhere near between those two directions. That is something, of course, 
which you could work out, with a little bit of algebra, but you see it at once on the 
geometrical picture. Now, I would like to discuss a few more things in physics, and show 
how they correspond to various things in this three-dimensional projective space.  
 
We are continually dealing with directions which are orthogonal to each other. 
Orthogonal means essentially perpendicularity, but we use the word orthogonal when 
talking about Minkowski space; to replace the word perpendicularity is rather reserved 
for Euclidean space. If we have two points which are orthogonal to each other, they will 
correspond to two points in this picture which are related in a special way.  That special 
way is that polar angle of one of them crosses through the other. If this is one of the 
points, and we make these tangents here, all of these tangents lie on the plane, all of 
these tangents cross the plane, which is called the polar plane that we started with, and 
if we take a second point, P, and a second point, Q, lying on the polar plane, P and Q 
correspond to two directions that are orthogonal. It’s possible to have this orthogonal 
relationship holding also that both P and Q are both outside the [INAUDIBLE].  
 
If we want to get an orthogonal system of axes, such as physicists are always using, we 
have to take a four point space; just one of them would be inside the quadric, the other 
three would be outside, and any two of them have to be orthogonal in accordance with 
this polar-polar relationship. Now we're dealing with Lorentz transformations all the time 
in physics. What might a Lorentz transformation correspond to in this picture? It 
corresponds to a linear transformation of our coordinates, the four coordinates of this 
three dimensional projective space, a linear combination of this transformation, we 
could just say a projective transformation, and it is such that this quadric remains 
invariant. Any Lorentz transformation can thus be pictured as a projective 
transformation in three dimensions, which leaves the quadric invariant. That is quite a 
good way of picturing a Lorentz transformation.  
 
Now, when people are studying Lorentz transformations, they often want to confine their 
attention to a certain subgroup of them, rather than the whole group of Lorentz 
transformations, and this, of course follows immediately in terms of this picture. We 
want to take the subgroup of Lorentz transformations which leaves a certain time axis 
invariant. That can mean all projective transformations which leave the quadric 
invariant, and also leave this point invariant. Now, suppose we just want to consider 
Lorentz transformations which leave a certain time axis invariant, and can also leave 
one of the space axes invariant, let us say the axis t and the axis z. That would mean 
that this point here, corresponding to the time axis, and another point here, 
corresponding to the z-axis, which is left invariant; these two points are left invariant, the 
quadric also has to  be left invariant, and thus, these two points are left invariant. It 
means that every point on this line is invariant. If the four points on the line are invariant, 
then every point has to be invariant.  
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So, we are making a projective transformation which leaves the quadric invariant, and 
leaves every point on this line invariant. Now this line must be a polar line up here, 
polars are all the points here that pass through a line; this line would be a polar line. 
This polar line will have to remain a polar line, because it is connected in an invariant 
way to this line with the quadric, but the points on this polar line will get changed. This 
polar line is subject to transformations; they will just be a single parameter family of 
transformations, which will correspond to the rotations which leave the time axis 
invariant and also leave the z-axis invariant. But, here we see a geometrical way of 
studying polar relations, and we see there are corresponding ways of generalizing. 
Instead of taking those Lorentz transformations, which leave all the points along this line 
invariant, we can take another line which touches the quadric, and consider Lorentz 
transformations which leave every point at this line invariant. Well, we can figure out just 
what those Lorentz transformations are like and we get results by the geometrical 
methods which are much more direct and easy to understand, than if we used the direct 
elliptical approach. In this case, there's really not much advantage in using a projective 
picture, because we're all familiar with that kind of Lorentz transformation-- we just 
make the rotation about an axis.  
 
But here we have some transformations which are not so familiar, and we're going to 
figure out the relationships more directly with the help of these ideas of projective 
geometry. Well, I don't know how long I should go on speaking; I'll say a few more 
things, perhaps. Suppose we want to consider an angular momentum in Minkowski 
space. Well, if we have a particle moving about a center, it would have a definite 
angular momentum. We shall have in our projective space, a point here represented 
with x's, which we are [INAUDIBLE]... and we have a point here to represent 
momentum, and another point to represent rotation, [WORKING ON BOARD]... the 
points I gave you, the points B and x, would be represented by two points in this 
projective picture, and the angular momentum would be represented by the line drawn 
here.  
 
Angular momentum corresponds to a line in our projective picture, but this line is not a 
general angular momentum. If we had this one angular momentum, and then take 
another angular momentum, and add it on, we begin to get something of a different 
nature-- a rather more complicated nature-- something which is not representable by a 
line in this projective picture, something that the geometries are quite familiar with, it's 
called a linear complex, a whole set of lines, which sets a certain kind of linear condition 
on their coordinates.  
 
I think that's enough discussion on the details of this. You might say that you find these 
projective ideas especially useful in discussing plane electromagnetic waves, in which 
we have a set of plane waves, and each of them will need four parameters to describe 
it: three parameters to describe the  direction of motion of the waves, and then a fourth 
parameter to describe its location in time. We may have a whole set of waves going in 
the same direction and they may differ only in the fourth parameter. Well now, according 
to this principle of duality which I was ta lking about, the plane wave, which I may call a 
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front of these waves, can be represented by a point. It’s just the ratio of these four 
coordinates that matter.  We get a space to represent the fronts, and this space is of the 
nature of the three-dimensional space in four dimensions, forming a sort of a cylinder. 
Of course, it's hard to draw a picture of a cylinder in four dimensions. In order to do it, 
you kind of have to drop out a few dimensions. If you do drop them out, then you get a 
normal cylinder in three-dimensional space. A cylinder like that will represent all the 
fronts of all the waves traveling with the velocity of light which we have in physical 
theory. 
 
Suppose we want to consider those waves which pass through a definite point in space-
time. That would correspond to points in this cylinder picture, which all lie on the plane. 
Well, I think I'll stop at that point, as I've shown you how physical ideas can be pictured 
immediately in geometrical terms, and the projective geometry is especially convenient 
for discussing Minkowski space. And, I hope the earlier part of my talk enabled you to 
appreciate the power of projective geometry and how it is really much more fun working 
with projective geometry than with Euclidean geometry. [APPLAUSE] 
 
[ROGER PENROSE] 
 
The following is a quote from Dr. Roger Penrose's closing remarks. 

"One particular thing that struck me... [LAUGHTER]...is the fact that he found it 
necessary to translate all the results that he had achieved with such methods into 
algebraic notation. It struck me particularly, because remember I am told of 
Newton, when he wrote up his work, it was always exactly the opposite, in that he 
obtained so much of his results, so many of his results using analytical 
techniques and because of the general way in which things at that time had to be 
explained to people, he found it necessary to translate his results into the 
language of geometry, so his contemporaries could understand him. Well, I guess 
geometry… [INAUDIBLE] not quite the same topic as to whether one thinks 
theoretically or analytically, algebraically perhaps. This rule is perhaps touched 
upon at the beginning of Professor Dirac's talk, and I think it is a very interesting 
topic." 

 
 


